![]()
新智元報道
編輯:犀牛
隨著Gemini 3模型與第七代TPU的強勢發布,谷歌終于打破了OpenAI與英偉達主導的市場敘事,宣告這一「沉睡的巨人」已憑借硬核實力完全醒來。
ChatGPT一轉眼已發布三年了。
過去三年,全球科技界都沉浸在一個由兩位「雙子星」所主導的敘事中——
英偉達負責「賣鏟子」,提供高達80%毛利的GPU硬件基石;
OpenAI則負責「挖金礦」,堅信Scaling Law(擴展法則),定義模型的前沿。
所有人都以為,谷歌這家一度被分析師認為在AI競賽中「落后」的巨頭,只能扮演一個追趕者的角色。
然而,現在一切都已不同。
上個月,當谷歌推出其Gemini 3系列模型和第七代TPU Ironwood時,市場的震撼達到了前所未有的程度。
這種震撼不是因為谷歌「追平」了對手,而是因為它直接重塑了游戲規則。
作為新智元ASI產業圖譜11月號文章,本文將深入分析谷歌是如何利用獨有的「全棧AI」戰略,構建起對手難以復制的護城河并重回巔峰的。
![]()
「沉睡的巨人」已完全醒來
Gemini 3發布后,就連奧特曼都罕見發聲,承認在某些關鍵維度上確實「落后」了。
更加戲劇性的是,英偉達股價也應聲下挫,過去一個月跌幅約15%。
如此大的跌幅逼得公司不得不發表聲明,強調其GPU的通用性和CUDA生態的不可替代性。
與此同時,谷歌母公司Alphabet的股價卻一路飆升,正邁向4萬億美元的市值。
![]()
這一切都指向了同一個事實:谷歌這個「沉睡的巨人」,現在已經完全醒來。
而這背后的力量源泉,正是其對AI技術棧的徹底垂直整合——「全棧AI」戰略。
正如谷歌CEO Sundar Pichai在Gemini 3發布時所言——
也正因為我們在AI創新上有一套與眾不同的全棧做法——從領先的基礎設施,到世界一流的研究、模型和工具,再到觸達全球數十億人的產品——我們才能以前所未有的速度,把先進的能力帶給全世界。
![]()
性能巔峰:Gemini 3
和Nano Banana的非線性突破
與Gemini 2.5 Pro相比,Gemini 3的進步并不體現在「參數翻倍」上,而是在推理能力與多模態架構上完成了一次顯著躍遷。
它被谷歌定位為一款基于最先進推理能力的原生多模態模型:能在同一個模型里同時處理文本、圖像、音頻和視頻,在統一的內部表示中做跨模態推理,并在多項主流基準測試中取得頂尖成績。
在LMArena競技場排行榜中,Gemini 3 Pro在所有項目中目前都排名第一。
在更強調綜合智能的Artificial Analysis Intelligence Index排行榜中,Gemini 3同樣以73分位居榜首。
![]()
![]()
如果說Gemini 3是智力的巔峰,那么Nano Banana Pro就是實用性和創造力的狂歡。
Nano Banana Pro一經發布,便迅速引發了一場「社交狂歡」,用戶僅需通過極其簡單的提示詞,就能生成高質量的戰力排行榜、知識繪本和各種表情包等。
![]()
谷歌CEO Sundar Pichai也提到,Nano Banana Pro在信息圖表的生成上取得了突破。
這種強大的應用屬性,讓普通用戶的創造力得以釋放。
正如互聯網讓更多人成為創作者一樣,AI工具正讓更多人以腦海中的方式來表達自我。
![]()
Nano Banana Pro生成的信息圖
「全棧AI」的垂直整合
模型能力的突破可能僅僅是冰山一角。
要理解谷歌的強大,則必須深入到其底層的戰略本質——全棧垂直整合。
如果將AI的進步視為一次登月計劃,那么競爭對手可能只擁有最先進的火箭(模型)或者最有力的燃料(GPU)。
而谷歌,則建造了一座集成了燃料制造廠、火箭設計院和發射臺的全套「航天中心」。
這套「全棧AI」從底層基礎設施、世界級研究(模型和工具),一直延伸到面向用戶的產品和平臺。
換句話說,從Nano Banana這樣的應用,到背后的模型,再到最底層的芯片,谷歌幾乎都握在自己手里。
TPU的誕生與進化
谷歌的全棧故事,要從一場看似迫不得已的「自救」行動講起。
2015年,谷歌內部部署了TPU v1,迅速在各部門獲得熱烈反響。
這并非出于炫技,而是被逼入了一個「不自研將難以支撐未來業務規模」的現實。
![]()
當時,深度學習開始廣泛滲透谷歌的搜索、廣告等核心業務,這讓谷歌工程團隊意識到一個關鍵問題:如果全面采用深度學習模型,谷歌全球數據中心的功耗將暴漲到難以承受的程度。
當時的GPU雖然更適合訓練大規模網絡,但其能效并非針對實時在線推理設計的。
這讓谷歌的高層意識到,繼續依賴CPU和GPU的現有路線不可持續。
于是,谷歌決定自己造一塊專用芯片(ASIC)——TPU,把目標定得非常簡單粗暴:只干一件事,把訓練和運行AI模型需要的那些矩陣、向量運算做到極致高效。
到了2017年,那篇著名的Transformer論文發表后,谷歌立即意識到,這個新架構的計算模式高度規則、矩陣密度極高、并行度極高,簡直是為TPU量身定做的。
于是,他們自己把軟件架構、編譯器、芯片架構、網絡拓撲、散熱系統都握在手里,形成全棧閉環。
TPU由此升級為谷歌AI基礎設施的底座和支柱。
![]()
如今,TPU已發展到了第七代Ironwood(鐵木)。
如果說TPU v4/v5p是兼顧訓練和推理的多面手,那么Ironwood就是在繼續強化訓練能力的前提下,把推理放到設計核心的一代——一個為大規模推理優先、又能承擔巨型模型訓練的定制利器。
相較第六代TPU Trillium(v6e),Ironwood在訓練與推理工作負載上的單芯片性能提升超過4倍;與TPU v5p相比,峰值算力最高可達10倍。
它也是谷歌迄今性能最強、能效最高的TPU。
Ironwood單個superpod可容納9,216顆TPU,依托9.6 Tb/s級別的芯片間互聯和約1.77 PB的共享高帶寬內存,大幅緩解了大模型訓練和推理中的通信瓶頸,使復雜AI模型在超大規模集群上運行得更快、更穩定。
它的出現,意味著谷歌正式把資源和架構重心從「訓練」轉向「訓練+大規模推理一體化」,并公開把「age of inference」(推理時代)定義為下一階段AI基礎設施的主戰場。
通過Ironwood+AI Hypercomputer這套系統級組合拳,谷歌同時在單芯片性能和整機房級算力密度兩條戰線對標英偉達,爭奪下一代AI基礎設施的話語權。
![]()
Ironwood超級機柜的一部分,直接在一個單一域內連接了9,216個Ironwood TPU
模型與硬件的深度契合
谷歌的AI全棧戰略在軟硬件一體化這點上看得最清楚。
靠著這套從芯片、數據中心到模型架構都自己打通的體系,谷歌把過去層層割裂的環節擰成了一根繩,性能和效率一起往上抬。
以Ironwood為例,它就是研究人員影響硬件設計、硬件反過來加速研究成果的持續閉環產物。
當谷歌DeepMind團隊需要為其頂尖模型實現特定架構突破或者優化時,他們可以直接與TPU工程師團隊緊密協同創新。
這種內部協作確保了模型架構的設計始終是基于最新代際的TPU進行訓練,從而相對于前代硬件實現顯著的性能提升和加速。
![]()
Jupiter數據中心網絡能夠將多個Ironwood超級莢連接成包含數十萬個TPU的集群
現在,谷歌的創新循環更進了一步,達到了「AI設計AI」的境界。
他們用一種名為AlphaChip的AI技術來設計下一代芯片的布局方案。
AlphaChip利用強化學習來生成更優化的芯片布局。
目前,這一方法已經成功應用于包括Ironwood在內的連續三代TPU的設計中。
這大大降低了谷歌對外部半導體設計工具和供應商的依賴。
通過這種自研芯片+內部優化,谷歌在算力成本上形成了天然優勢,從而避免了昂貴的「CUDA稅」。
巨頭們的「投懷送抱」
谷歌內部實測數據顯示,Ironwood在同等負載下的推理成本較GPU旗艦系統低30%-40%。
有分析指出,谷歌提供同等推理服務時的底層成本可能僅為對手的兩成。
在推理時代,這樣的成本差異足以改變大客戶的架構選擇:對每年在推理上投入數千萬甚至上億美元的企業來說,壓縮三到五成支出,足以改寫財報。
在這一層意義上,TPU正在變成許多公司重構推理基礎設施時優先考慮的算力引擎。
谷歌自己也正在將TPU從「內部黑科技」打造為市場上的「生態可選項」,進而吸引像Anthropic、meta這樣的大客戶。
僅Anthropic一家就計劃接入高達100萬個TPU。
谷歌還順勢啟動了TPU@Premises計劃,將TPU直接部署在企業的數據中心,使得客戶可以在本地以極低的延遲使用推理能力。
近期還有市場傳聞稱,meta正評估在2027年把TPU引入自家數據中心,并最早從明年起通過谷歌云租用部分算力——無論最終如何落地,這類討論本身就說明TPU已經進入一線互聯網公司的選項集。
回到更可量化的層面:根據谷歌第三季度財報,谷歌云新增客戶數量同比增長近34%,超過10億美元的大單規模已超過前兩年的總和,超過70%的客戶正在使用谷歌云的AI產品。
這些變化,在很大程度上都與谷歌在算力成本和產品形態上的優勢緊密相關。
C端:全棧AI的終極引擎
正如上文谷歌CEO劈柴哥所言,谷歌的全棧AI戰略,是一個涵蓋AI基礎設施、世界級研究(包括模型和工具)以及將AI帶給全球用戶的產品和平臺的全面系統。
C端產品——特別是其核心業務如搜索、地圖以及Gemini app和Nano Banana Pro等新的AI應用——不僅僅是戰略的最終輸出,它們更是驅動整個全棧AI生態系統向前發展的核心引擎,是實現技術驗證、數據積累和商業閉環的關鍵。
谷歌憑借其無可匹敵的用戶規模和數據廣度,為其定制硬件和領先模型提供了無與倫比的「煉丹爐」和「試驗場」。
這些數據源包括谷歌搜索、Android、YouTube等,谷歌通常自己使用這些數據。
而像Gemini系列模型,則被視為是貫穿谷歌所有產品的主線。
在2025年第三季度,谷歌的第一方模型(如 Gemini)僅通過客戶直接API,每分鐘就處理約70億個tokens。
若把搜索、YouTube、Android等所有界面加起來,每月被模型消化的tokens已超過1.3千萬億個(quadrillion),一年內增長了20多倍。
![]()
這些數據展示了C端產品作為AI能力載體的恐怖規模,也使得Gemini應用在推出后,月活躍用戶數迅速超過6.5億,形成了驅動AI進步的數據飛輪。
以谷歌AI Mode為例,自推出以來其在美國實現了強勁且持續的周環比增長,查詢量在一個季度內翻了一番。
截至三季度,已擁有超過7500萬的日活用戶,推廣到了全球40種語言。
最重要的是,AI Mode已經為搜索帶來了增量的總查詢增長。
12月2日,谷歌已宣布將AI Mode融入進搜索中,給搜索用戶提供類似ChatGPT的聊天體驗。
這種C端產品成功將AI技術轉化為實實在在的業務增長,進一步奠定了谷歌在核心領域的競爭優勢。
簡言之,谷歌的C端產品(如搜索),是其全棧AI戰略的需求源、數據場和商業出口。
這些C端產品一方面制造了真實的流量和使用壓力,另一方面又不斷把反饋灌回谷歌的TPU和Gemini,讓它們在高頻迭代中越跑越省錢、越跑越高效。
全棧AI:改寫技術文明底座
在當下這個以「推理為先」的AI時代,谷歌率先把競爭從單一模型的短跑,換成了全棧系統的馬拉松。
至此,真正的護城河不再是誰有更多的芯片、更先進的模型,而是誰掌握了「基礎設施-研究-產品-數據」的閉環。
展望未來,如果說過去互聯網解決的是「信息是如何被找到的」,那么全棧AI要回答的將是「世界如何被重新組織」。
以谷歌為代表的科技公司,能否將這套AI閉環,轉化為更公平的教育、更高效的科研、更可持續的產業,將在很大程度上決定下一代技術文明的形狀——
那時,我們也許不再刻意談論AI,因為它將成為文明的默認背景。
參考資料:
https://cloud.google.com/blog/products/compute/ironwood-tpus-and-new-axion-based-vms-for-your-ai-workloads
https://cloud.google.com/transform/ai-specialized-chips-tpu-history-gen-ai?utm_source=chatgpt.com
秒追ASI
?點贊、轉發、在看一鍵三連?
點亮星標,鎖定新智元極速推送!





京公網安備 11011402013531號